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Abstract
In many areas of computing, techniques ranging from testing to
formal modeling to full-blown verification have been successfully
used to help programmers build reliable systems. But although net-
works are critical infrastructure, they have largely resisted analysis
using formal techniques. Software-defined networking (SDN) is a
new network architecture that has the potential to provide a foun-
dation for network reasoning, by standardizing the interfaces used
to express network programs and giving them a precise semantics.

This paper describes the design and implementation of the first
machine-verified SDN controller. Starting from the foundations, we
develop a detailed operational model for OpenFlow (the most pop-
ular SDN platform) and formalize it in the Coq proof assistant. We
then use this model to develop a verified compiler and run-time sys-
tem for a high-level network programming language. We identify
bugs in existing languages and tools built without formal founda-
tions, and prove that these bugs are absent from our system. Finally,
we describe our prototype implementation and our experiences us-
ing it to build practical applications.

Categories and Subject Descriptors F.3.1 [Specifying and Verify-
ing and Reasoning about Programs]: Mechanical verification

Keywords Software-defined networking, OpenFlow, formal veri-
fication, Coq, domain-specific languages, NetCore, Frenetic.

1. Introduction
Networks are some of the most critical infrastructure in modern so-
ciety and also some of the most fragile! Networks fail with alarm-
ing frequency, often due to simple misconfigurations or software
bugs [8, 19, 30]. The recent news headlines contain numerous ex-
amples of network failures leading to disruptions: a configuration
error during routine maintenance at Amazon triggered a sequence
of cascading failures that brought down a datacenter and the cus-
tomer machines hosted there; a corrupted routing table at GoDaddy
disconnected their domain name servers for a day and caused a
widespread outage; and a network connectivity issue at United Air-
lines took down their reservation system, leading to thousands of
flight cancellations and a “ground stop” at their San Francisco hub.

One way to make networks more reliable would be to de-
velop tools for checking important network invariants automati-
cally. These tools would allow administrators to answer questions
such as: “does this configuration provide connectivity to every host
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in the network?” or “does this configuration correctly enforce the
access control policy?” or “does this configuration have a forward-
ing loop?” or “does this configuration properly isolate trusted and
untrusted traffic?” Unfortunately, until recently, building such tools
has been effectively impossible due to the complexity of today’s
networks. A typical enterprise or datacenter network contains thou-
sands of heterogeneous devices, from routers and switches, to web
caches and load balancers, to monitoring middleboxes and fire-
walls. Moreover, each device executes a stack of complex protocols
and is configured through a proprietary and idiosyncratic interface.
To reason formally about such a network, an administrator (or tool)
must reason about the proprietary programs running on each dis-
tributed device, as well as the asynchronous interactions between
them. Although formal models of traditional networks exist, they
have either been too complex to allow effective reasoning, or too
abstract to be useful. Overall, the incidental complexity of networks
has made reasoning about their behavior practically infeasible.

Fortunately, recent years have seen growing interest in a new
kind of network architecture that could provide a foundation for
network reasoning. In a software-defined network (SDN), a program
on a logically-centralized controller machine defines the overall
policy for the network, and a collection of programmable switches
implement the policy using efficient packet-processing hardware.
The controller and switches communicate via an open and standard
interface. By carefully installing packet-processing rules in the
hardware tables provided on switches, the controller can effectively
manage the behavior of the entire network.

Compared to traditional networks, SDNs have two important
simplifications that make them amenable to formal reasoning. First,
they relocate control from distributed algorithms running on indi-
vidual devices to a single program running on the controller. Sec-
ond, they eliminate the heterogeneous devices used in traditional
networks—switches, routers, load balancers, firewalls, etc.—and
replace them with stock programmable switches that provide a
standard set of features. Together, this means that the behavior of
the network is determined solely by the sequence of configuration
instructions issued by the controller. To verify that the network has
some property, an administrator (or tool) simply has to reason about
the states of the switches as they process instructions.

In the networking community, there is burgeoning interest in
tools for checking network-wide properties automatically. Sys-
tems such as FlowChecker [1], Header Space Analysis [12],
Anteater [17], VeriFlow [13], and others, work by generating a
logical representation of switch configurations and using an auto-
matic solver to check properties of those configurations. The con-
figurations are obtained by “scraping” state off of the switches or
inspecting the instructions issued by an SDN controller at run-time.

These tools represent a good first step toward making networks
more reliable, but they have two important limitations. First, they
are based on ad hoc foundations. Although SDN platforms such as
OpenFlow [21] have precise (if informal) specifications, the tools
make simplifying assumptions that are routinely violated by real
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Abstract
Recent years have seen growing interest in high-level programming
languages for networks. But the design of these languages has been
largely ad hoc, driven more by the needs of applications and the
capabilities of network hardware than by foundational principles.
The lack of a semantic foundation has left language designers with
little guidance in determining how to incorporate new features, and
programmers without a means to reason precisely about their code.

This paper presents NetKAT, a new language for programming
networks that is based on a solid mathematical foundation and
comes equipped with a sound and complete equational theory. We
describe the design of NetKAT, including primitives for filtering,
modifying, and transmitting packets; operators for combining pro-
grams in parallel and in sequence; and a Kleene star operator. We
show that NetKAT is an instance of a canonical and well-studied
mathematical structure called a Kleene algebra with tests (KAT),
and prove that its equational theory is sound and complete with
respect to its denotational semantics. Finally, we present practi-
cal applications of the equational theory including syntactic tech-
niques for checking reachability properties, proving the correctness
of compilation and optimization algorithms, and establishing a non-
interference property that ensures isolation between programs.

1. Introduction
Traditional networks have been called “the last bastion of main-
frame computing” [9]. Unlike modern computers, which are im-
plemented with commodity hardware and programmed using stan-
dard interfaces, networks are built the same way as in the 1970s:
out of special-purpose devices such as routers, switches, firewalls,
load balancers, and middle-boxes, each implemented with custom
hardware and programmed using proprietary interfaces. This de-
sign makes it difficult to extend networks with new functionality,
and effectively impossible to reason precisely about their behavior.

In recent years, a revolution has taken place in the field of net-
working, with the rise of software-defined networking (SDN). In
SDN, a general-purpose controller machine manages a collection
of programmable switches. The controller responds to events such
as newly connected hosts, topology changes, and shifts in traffic
load by re-programming switches accordingly. This logically cen-
tralized, global view of the network makes it possible to implement
a wide variety of standard applications such as shortest-path rout-
ing, traffic monitoring, and access control, as well as more sophis-
ticated applications such as load balancing, intrusion detection, and
fault-tolerance on commodity hardware.

A major appeal of SDN is that it defines open standards that any
vendor can implement. For example, the OpenFlow API defines a
low-level configuration interface that clearly specifies the capabil-
ities and behavior of switch hardware. However, programs written
directly for SDN platforms such as OpenFlow are akin to assembly:
easy for hardware to implement, but difficult for humans to write.

Network programming languages. Several research groups have
developed higher-level, domain-specific languages for program-
ming software-defined networks [5–7, 22–24, 28, 29]. These net-

work programming languages allow programmers to specify the
behavior of each switch in the network, using high-level abstrac-
tions that a compiler and run-time system translate to low-level in-
structions for the underlying hardware. Unfortunately, the design of
these languages is largely ad hoc, driven more by the needs of in-
dividual applications and the capabilities of present-day hardware
than by any foundational principles. Indeed, the lack of guiding
principles has left language designers unsure which features to in-
corporate into their languages, and programmers without a means
to reason directly about their programs.

As an example, the NetCore language [7, 22, 23] provides a rich
collection of programming primitives including predicates that fil-
ter packets, actions that modify and forward packets, and composi-
tion operators that build larger policies out of smaller ones. NetCore
has even been formalized in Coq. But like other network program-
ming languages, the design of NetCore is ad hoc. As the language
has evolved, its designers have added, deleted, and changed the
meaning of primitives as needed. Without principles or metathe-
ory to guide its development, the evolution of NetCore has lacked
clear direction and foresight. It is not clear which constructs are es-
sential and which can be derived. When new primitives are added,
it is not clear what axioms they should satisfy.

An even more pressing issue is that these languages specify
the behavior of the switches in the network, but nothing more. Of
course, when network programs are actually executed, the end-to-
end functionality of the overall system is determined both by the
behavior of switches and by the structure of the network topology.
Hence, to answer almost any interesting question such as “Can X
connect to Y?”, “Is traffic from A to B routed through Z?”, or “Is
there a loop involving S?”, the programmer must step outside the
confines of the linguistic model and the abstractions it provides.

To summarize, we believe that a foundational model for network
programming languages is essential. Such a model should (1) iden-
tify the essential constructs for programming networks, (2) provide
guidelines for incorporating new features, and (3) unify reasoning
about switches, topology and end-to-end behavior. No existing net-
work programming language meets these criteria.

Semantic foundations. We begin our development by focusing
on the behavior of the whole network. This is in contrast to previ-
ous languages, which have focused locally on the behavior of indi-
vidual switches. Abstractly, a network can be seen as an automaton
that shuttles packets from node to node along the links that make
up its topology. Hence, from a linguistic perspective, it is natural to
begin with regular expressions, the language of automata. Regular
expressions are a natural way to specify the components of a net-
work: a path through a network is represented as a concatenation
of processing steps (p; q; · · · ), a set of paths is represented using
union (p + q + · · · ) and iterated processing is represented using
Kleene star. Moreover, by modeling networks in this way, we get a
ready-made reasoning theory: Kleene algebra, a decades-old sound
and complete equational theory of regular expressions.

With Kleene algebra as the choice for representing global
network structure, we can turn our attention to specifying local
switch-processing functionality. Fundamentally, a switch imple-

NetKAT: Semantic  
Foundations for Networks

• Carolyn Anderson (Swarthmore)
• Nate Foster (Cornell)
• Arjun Guha (UMass)
• Jean-Baptiste Jeannin (CMU)
• Dexter Kozen (Cornell)
• Cole Schlesinger (Princeton)
• David Walker (Princeton)

To appear in POPL ’14.



Programmable Networks



Programmable Networks



Programmable Networks

Controller Platform

Controller Application



Programmable Networks

Controller Platform

Controller Application

Enabling a shift from 
bits and protocols to 

abstractions and applications



Challenges

Thousands of nodes...

Heterogeneous devices...

Complex con"gurations...

Difficult to reason about...



Current Abstractions
Software-De!ned Networks
• Maple [SIGCOMM ’13]
• Corybantic [HotNets ’13]
• Frenetic [ICFP ’11, POPL, 12’, NSDI ’13]

Middleboxes
• CoMB [NSDI ’12]
• APLOMB [SIGCOMM ’12]
• SIMPLE [SIGCOMM ’13]

 End Hosts
• PANE [SIGCOMM ’13]
• EyeQ [NSDI ’13]
• ETTM [NSDI ’11]



Limitations

We still lack uni!ed abstractions 
for programming networks... 

There are complex interactions 
between components...

Progress on veri!cation tools is 
encouraging but nascent... 

Most existing systems assume 
a single point of control...

zlab.wordpress.com



SDN Limitations 

SDN Controller

What network operators want:
• “Ensure that all traffic traverses 

at least one "rewall.”
• “Give Hadoop traffic priority 

over backup traffic”
• “Let the PPT group manage 

their network (in Haskell?)”

What SDN provides:

Match HTTP traffic and forward 
it out physical port 4

SDN is not the right abstraction for network management!
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Policy Language

Transformations

Enforcement

Specify global network policy in a 
high-level declarative language{
Transform policies into ones that can 
be delegated or enforced locally{
Interpose on network traffic to 
ensure policy compliance{



Policy Language



Formalism

Syntax
• Logical predicates
• Path expressions
• Bandwidth constraints

 Properties
• Network paths
• Function sequences
• Resource usage



Examples

(	
  ethType	
  =	
  0x800	
  and
	
  	
  ipProto	
  =	
  0x06	
  )
-­‐>	
  h1	
  .*	
  nat	
  .*	
  dpi	
  .*	
  h2
	
  @	
  max(1GB/s)

Informally: ensure that all TCP traffic between 
two hosts is processed by NAT and DPI 
functions (in that order) and abides by a rate 
limit of 1GB/s.



Examples

(	
  ipSrc	
  =	
  192.168.1.1/16	
  and
	
  	
  ipDst	
  =	
  192.168.1.1/16	
  and
	
  	
  ipProto	
  =	
  0x06	
  and
	
  	
  ipPort	
  =	
  50060	
  )
-­‐>	
  .*	
  
	
  @	
  min(100MB/s)

Informally: ensure there is at least 100MB/s of 
bandwidth for Hadoop traffic.



Examples

(	
  ipSrc	
  =	
  192.168.1.1/16	
  )
-­‐>	
  .*	
  m1	
  .*
(	
  !ipSrc	
  =	
  192.168.1.1/16	
  )
-­‐>	
  !(.*	
  m1	
  .*)

Informally: ensure resource isolation between 
two subnetworks for a given middlebox



Examples

true
-­‐>	
  (	
  .*	
  fire1	
  .*	
  fire2	
  .*
	
  	
  	
  |	
  .*	
  fire2	
  .*	
  fire1	
  .*	
  )

Informally: ensure that all traffic traverses at 
least two "rewalls, in either order.



Examples

forall
true
-­‐>	
  (	
  .*	
  mb1	
  .*)
	
  @	
  max(10GB/s)

Informally: ensure that all traffic across the 
middlebox is capped at 10GB/s.



Flow Quanti"ers

true	
  -­‐>	
  (h1|h2)	
  .*	
  h3	
  @	
  max(100MB/s)

Many statements involve multiple hosts:



Flow Quanti"ers

true	
  -­‐>	
  (h1|h2)	
  .*	
  h3	
  @	
  max(100MB/s)

Many statements involve multiple hosts:

	
  	
  foreach
	
  	
  true	
  -­‐>	
  (h1|h2)	
  .*	
  h3	
  @	
  max(100MB/s)

≡

	
  	
  true
	
  	
  -­‐>	
  h1	
  .*	
  h3	
  @	
  max(100MB/s)
	
  	
  true
	
  	
  -­‐>	
  h2	
  .*	
  h3	
  @	
  max(100MB/s	
  	
  )

Quanti"ers determine devision of bandwidth:



	
  	
  forall
	
  	
  true	
  -­‐>	
  .*	
  h3	
  @	
  max(100MB/s)

≡

	
  	
  true
	
  	
  -­‐>	
  h1	
  .*	
  h3	
  @	
  max(50MB/s)
	
  	
  true
	
  	
  -­‐>	
  h2	
  .*	
  h3	
  @	
  max(50MB/s	
  	
  )

Flow Quanti"ers

true	
  -­‐>	
  (h1|h2)	
  .*	
  h3	
  @	
  max(100MB/s)

Many statements involve multiple hosts:

Quanti"ers determine devision of bandwidth:



	
  	
  forsome
	
  	
  true	
  -­‐>	
  (h1|h2)	
  .*	
  h3	
  @	
  max(100MB/s)

≡

	
  	
  true
	
  	
  -­‐>	
  (h1|h2)	
  .*	
  h3	
  @	
  max(100MB/s)

Flow Quanti"ers

true	
  -­‐>	
  (h1|h2)	
  .*	
  h3	
  @	
  max(100MB/s)

Many statements involve multiple hosts:

Quanti"ers determine devision of bandwidth:



Compiler



Policy Language

Transformations

Enforcement

Compiler

Tasks:
• Path selection
• Bandwidth allocation
• Code generation

Challenges:
• Heterogeneous devices
• Network-wide resources

Approach:
• Encode as a constraint problem
• Solve using linear programming



Constraint Problem

Encode with standard !ow conservation and capacity constraints



Optimization Criteria

Weighted Shortest Path:
Minimizes total number of hops 
in assigned paths (standard)

Min-Max Ratio:
Minimizes the maximum fraction 
of reserved capacity (balance)

Min-Max Reserved:
Minimizes the maximum amount 
of reserved bandwidth (failures)



Code Generation

Network Switches
• Encode paths using NetCore [POPL ’12]
• Generate tags to identify paths
• Install rules on OpenFlow switches

Middleboxes
• Translate functions to Click [TOCS ’00]
• Install on software middleboxes

 End Hosts
• Generate code for Linux tc and iptables
• Experimental support for a custom Merlin 

kernel module based on netfilter



Delegation



Federated Control

Every network has multiple tenants 
• Campuses and enterprises
•Data centers
•Wide-area

But many platforms assume a single 
omnipotent programmer
• SDN controllers
•Middlebox platforms

Merlin provides mechanisms for
•Delegating functionality
• Verifying policy modi"cations 



Policy Language

Transformations

Enforcement

Compiler
Policy restriction

Restrict global policy to a subset of 
the overall traffic

Modi!cation:
Tenants modify the restricted policy 
to suit their custom needs

Veri!cation:
Owner checks that the modi"ed 
policy re"nes the original...

Integrate:
...and then reintegrates the modi"ed 
policy back into the global policy



Delegation Example

foreach
true	
  
-­‐>	
  (h1|h2)	
  .*	
  h3	
  
	
  @	
  max(100MB/s)

Global policy

foreach
true
-­‐>	
  h1	
  .*	
  h3	
  
	
  @	
  max(100MB/s)

Restriction to host 1



Modi"ed Policy

foreach
(tcpDst	
  =	
  80)
-­‐>	
  h1	
  .*	
  lb	
  .*	
  h3	
  
	
  @	
  max(50MB/s)

foreach
(tcpDst	
  =	
  22)
-­‐>	
  h1	
  .*	
  dpi	
  .*	
  h3
	
  @	
  max(25MB/s)

foreach
(!(tcpDst	
  =	
  22	
  |	
  tcpDst	
  =	
  80))
-­‐>	
  h1	
  .*	
  h3
	
  @	
  max(25MB/s)



Veri"cation

Essential operation:
Policy inclusion: P1 ⊆ P2

Algorithm:
• Pair-wise comparison of statements
• Check for path inclusion on overlaps
• Aggregate bandwidth constraints

Implementation:
•Decide predicate overlap using SAT
•Decide path inclusion using NFAs



Experience



Implementation
Prototype implementation
• OCaml
• Gurobi solver
• Z3 theorem prover
• DPrle NFA library
• Linux kernel modules
• Frenetic language

Preliminary deployment
• Pronto 3290 switches
• Dell Force10 switch
• OpenVSwitch
• Dell r720 servers



Evaluation
Can Merlin simplify network management while providing 
end-to-end performance improvements for applications?
• Hadoop benchmark
• Microbenchmarks

Does our compilation and veri!cation infrastructure scale?
• Simple simulations on realistic data center topologies 

and policies of increasing size 
• Data from Benson et al. [IMC ’10]



Performance Benchmark
Experimental setup:
• Four 16-core Dell r720 servers with 32GB RAM 
• Pronto 3290 switch with 1GB links
• Two applications: sorting and word count
• Input: 10GB data
• Traffic: UDP packets generated with iperf
• Merlin policy: reserve 90% capacity for Hadoop
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Microbenchmark: TCP/UDP
Experimental setup:
• Two 16-core Dell r720 servers with 32GB RAM 
• Pronto 3290 switch with 1GB links
• Traffic: TCP/UDP !ows/packets generated with iperf
• Merlin policy: reserve 70% capacity for TCP



Microbenchmark: TCP/TCP
Experimental setup:
• Two 16-core Dell r720 servers with 32GB RAM 
• Pronto 3290 switch with 1GB links
• Traffic: TCP !ows generated with iperf
• Merlin policy: reserve 70% capacity for TCP
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Scalability: Compiler
Experimental setup:
• 16-core Dell r720 server with 32GB RAM 
• Topologies from Benson et al. [IMC ’10]
• Statements encode shortest paths between hosts
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Scalability: Compiler
Experimental setup:
• 16-core Dell r720 server with 32GB RAM 
• Topologies from Benson et al. [IMC ’10]
• Statements encode shortest paths between hosts

LP GenerationTotal LP Solution



Scalability: Veri"cation
Experimental setup:
• 16-core Dell r720 server with 32GB RAM 
• Topologies from Benson et al. [IMC ’10]
• Statements encode shortest paths between hosts

Increasing 
Statements

Increasing 
Path 

Expressions

Increasing 
Bandwidth 
Constraints



Wrapping Up



Conclusion

Merlin is a uni!ed network management framework...

It supports heterogeneous devices...

It handles paths, network functions, and bandwidth...

It generates complex con"gurations...

It provides delegation and automatic veri"cation...
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